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Abstract 

In the ideal world, the performance of a program running on a supercomputer 
would always be proportional to the peak speed of the system being used.  
Furthermore, the program would always achieve a high percentage of peak (e.g., 
50% or better).  In the real world, this is frequently not the case.  Therefore, it is 
important to distinguish between the following five concepts:  (1) performance 
(run time), (2) ideal speedup, (3) hard scalability (fixed problem size speedup), 
(4) soft scalability (scaled speedup), and (5) throughput (how long it takes to run 
a collection of jobs). 

This report addresses these concepts and explains their meanings and 
differences.  Hopefully, this will allow readers to evaluate the behavior of 
programs and computer systems, and most importantly, to evaluate their own 
expectations for running a program on a particular system or class of systems. 

Examples, which demonstrate these concepts, are drawn from a variety of 
projects and include both problems from multiple computational technology 
areas (CTAs) and results from outside of the Department of Defense (DOD).  In 
some cases, there will also be theoretical arguments to help better explain the 
issues. 
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1.  Introduction 

In the ideal world, the performance of a program running on a supercomputer 
would always be proportional to the peak speed of the system being used.  
Furthermore, the program would always achieve a high percentage of peak (e.g., 
50% or better).  In the real world, this is frequently not the case.  Therefore, it is 
important to study and discuss performance metrics for parallel systems and 
programming.  Two important uses of these metrics are (1) the evaluation of the 
behavior of programs and computer systems and (2) the evaluation of 
expectations for running a program on a particular system or class of systems. 

The metrics that will be discussed in this report are (1) performance (run time), 
(2) ideal speedup, (3) hard scalability (fixed problem size speedup), (4) soft 
scalability (scaled speedup), and (5) throughput (how long it takes to run a 
collection of jobs).   

The discussion of these metrics will include a mixture of theoretical analysis and 
experimental results.  The experimental results will come from a variety of 
disciplines but, in all cases, will involve real codes (e.g., no benchmarks) with 
representative data sets.  While the experimental results were obtained using real 
systems, the use of those systems does not constitute an endorsement of the 
product.  Additionally, just because system A outperforms system B for one data 
set or program does not imply that that will be the case for all data sets or 
programs.   

2.  Performance 

Most users are primarily interested in the following issues: 

(1) the ability of the computer system to run their job;  

(2) the correctness of the results;  

(3) how fast does the job run once it starts running;  

(4) how long will it take a series of jobs to complete; and  

(5) when will the system start running their jobs. 

The first, second, and fifth of these issues are beyond the scope of this report.  
The fourth topic will be discussed in section 6.  Performance can be quantified as: 

.
Efficiency
Parallel    

Efficiency
Serial    

Efficiency
orithmiclgA    

ePerformanc
Peak lTheoretica    ePerformanc ×××=  
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For many jobs, one can specify either a minimum acceptable level of performance 
and/or a desirable range for the performance.  This need not preclude the 
achievement of even higher levels of performance.  However, there may be 
resource allocation issues that favor sticking to the desirable range for the 
performance.  What is important to note is that the program with the highest 
level of parallel efficiency may not be the program with the highest level of 
algorithmic efficiency* and vice versa.  Furthermore, the history of parallel 
computing contains numerous examples of systems that would scale well, but on 
which it was notoriously difficult to obtain high levels of serial performance (e.g., 
the Thinking Machines CM2/CM200, many systems containing the Intel i860 
microprocessor, and the Cray T3D [Bailey 1993; Simon and Dagum 1991; Simon 
et al. 1994; Bailey and Simon 1992; Oberlin 1999]).  Therefore, it can be seen that 
all of the terms in this equation actively contribute to the delivered level of 
performance.  This is a very different point of view from those who stress issues 
such as the following: 

(1) The peak level of performance. 

(2) The performance of a machine when running the unlimited size LINPACK 
benchmark (a benchmark that tends to have a high correlation with the 
peak speed of a system). 

(3) That so long as a system is highly scalable with an efficient interconnect, 
one can “always” overcome a performance problem by using more 
processors (Simon et al. 1994). 

Instead, what may be needed are combinations of programs and systems to run 
them on that provide an acceptable range of performance (preferably measured 
in run time, as opposed to MFLOPS) for a reasonable range of problem sizes 
and/or complexities.  For example, if two programs can achieve similar results 
with similar levels of performance, for an acceptable range of problem sizes, then 
it is unimportant if the combination of program A and machine A has limited 
scalability past 64 processors and no scalability past 128 processors, while the 
combination of program B and machine B has good scalability to hundreds of 
processors.  One might ask, how can this be?  Some of the rationale behind this 
statement are as follows: 

(1) If the combination of program B and machine B needs the scalability just to 
match the performance of program A and machine A then, at best, program 
B and machine B are equal to program A and machine A. 

                                                      
* Algorithmic efficiency is a concept that can be difficult to measure in an absolute sense.  

However, it can generally be quantified in a relative sense (e.g., the relative number of floating 
point operations two programs require to obtain a solution to a particular problem at a specified 
level of precision), and, in most cases, that is sufficient. 
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(2) If one needs high levels of scalability to match another system’s 
performance, then the cost effectiveness of the system must be considered. 

(3) Scalability well beyond the planned size of a system is of primarily 
theoretical value. 

(4) On most systems, most users have limited allocations and/or limited job 
priorities.  Therefore, the user may find it difficult to use more than a 
certain number of processors at one time.  Again, this results in unlimited 
levels of scalability being primarily of theoretical value. 

Of course, it is also possible that the combination of program B and machine B is 
not only more scalable, but also performs at least as well as program A and 
machine A on a per processor basis.  In such a case, there may be a strong reason 
for favoring the combination of program B and machine B.  

The following excerpts (Mascagni 1990) should help to demonstrate this point: 

“One of the most intriguing aspects of linear elliptic boundary 
value problems (BVPs) is their relationship to probability. 

. 

. 

. 

It is obvious that this algorithm faithfully implements the 
collection of statistics implied in equation 2 in an 
“embarrassingly” parallel fashion.  . . .  It also makes little 
difference if we implement this algorithm on a shared or 
distributed memory machine (or a loosely coupled group of 
workstations) since there is no interprocessor communication 
until the statistics are centrally collected. 

. 

. 

. 

It is well known that these Monte Carlo methods are much 
inferior to many deterministic methods for these types of 
problems.” 

Additional material on this topic can be found in Singh et al. (1998) and Wang 
and Tafti (1997). 
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3.  Ideal Speedup 

Frequently, it is necessary to predict the performance of a program for a fixed 
problem size when larger numbers of processors are used.  In other cases, one 
needs to consider the relative merits of running two programs at once (each 
using half of the processors) vs. running the same programs sequentially (each 
using all of the processors).  Questions such as these lead to the concept of ideal 
speedup. 

The most commonly used definition for ideal speedup is that the speed at which 
the program runs on a particular machine is proportional to the number of 
processors being used.  Returning to the concepts discussed in section 2, this is 
equivalent to saying that the parallel efficiency should be 100%. 

Clearly from the standpoint of efficiency, unless the parallel efficiency is 100%, it 
is more efficient to run two programs at once, rather than running them 
sequentially.  However, there are frequently other concerns (e.g., memory 
requirements and/or minimum performance requirements) that may outweigh 
this consideration. 

There are many reasons why a program will not show linear speedup.  Many of 
these have to do with limitations in the parallelization effort and/or 
inefficiencies in the hardware.  As such, they are considered to be the cause for 
deviations from ideality.  These topics will be readdressed later in this report.  
However, one can argue that for some algorithms, and in particular, for some 
approaches to parallelizing those algorithms, that linear speedup is not the ideal 
speedup.  Probably the most common example of this occurs when parallelizing 
a loop with M iterations when using N processors.  If M is within about an order 
of magnitude of N, then the ideal speedup takes on the appearance of a staircase.  
This can best be seen in Table 1 and Figure 1. 

Table 1.  Predicted speedup for a loop with 15 units of parallelism. 

Number of 
Processors 

Maximum Units of Parallelism 
Assigned to a Single Processor 

Predicted 
Speedup 

1 15 1.000 
2 8 1.875 
3 5 3.000 
4 4 3.750 

5–7 3 5.000 
8–14 2 7.500 
15 1 15.000 
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Figure 1.  Predicted speedup for a loop with various units of parallelism. 

 

This behavior is commonly seen with programs parallelized using OpenMP and 
its predecessors (it can also show up in other cases with a limited amount of 
parallelism [Bettge et al. 1999]).  Providing that a program is able to meet its 
performance criteria, it is probably not appropriate to strongly penalize a 
program for this type of behavior.  Instead, one should take this type of behavior 
into account when establishing the definition of ideal speedup.   

This deviation from linear speedup is not an example of poor load balancing.  
Poor load balancing occurs when one or more processors receive significantly 
more work than the remaining processors.  In this case, the distribution of work 
is limited by the limitations of integer arithmetic and, therefore, should be 
considered to be perfectly balanced (even though some processors might receive 
one more unit or work than another processor).  Similarly, this is not an example 
of Amdahl’s law, since the loop is fully parallelized. 

4.  Hard Scalability 

When discussing the actual scalability of a program, one really needs to talk 
about the combination of the program, the hardware, and the data set.  The 
earliest metric for scalability is referred to as either hard scalability or fixed size 
scalability.  This assumes that one has a fixed problem to solve and one wants to 
know how many processors are required to deliver an acceptable level of 
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performance.  There can be a number of reasons why the program will fail to 
deliver ideal speedup.  Furthermore, on real distributed memory architectures 
running real codes and data sets, one frequently finds that large data sets cannot 
be run using a single processor of an MPP (most commonly due to insufficient 
memory).  Smaller data sets that can be run on a single processor of an MPP may 
have a poor communication-to-computation ratio and, therefore, will show a low 
level of scalability.  As a result of these problems, another metric was proposed, 
soft scalability, and it will be discussed in section 5. 

Many of today’s MPPs have powerful enough processors and enough memory 
per processor to enable many problems to be run on just one or two processors, if 
only for the purpose of running a scalability study.  Therefore, let us briefly 
consider the three most commonly mentioned reasons for deviations from ideal 
speedup. 

(1) Amdahl’s Law:  run time = serial run time + parallel run time.  As the 
number of processors approach infinity, the parallel run time will 
asymptotically approach zero, and the run time will asymptotically 
approach the serial run time.  Therefore, so long as one cannot eliminate the 
serial run time, there is an upper bound on speed at which a particular 
machine can run a particular job (see Figure 2). 
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Figure 2.  The effect of Amdahl’s Law on performance. 
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(2) Communication costs are nearly always a function of the number of 
processors being used.  In some cases, the function is a weak one (e.g., 
O(log(N)), while in other cases, it can be much stronger (e.g., O(N)).  This 
now gives us the following:  parallel run time = parallel computation time 
+ communication time.  Therefore, even if the serial run time is zero, the 
run time will not asymptotically approach zero.  Instead, a plot of the run 
time as a function of the number of processors used is expected to be U 
shaped.  In other words, there is a small range of processors for which the 
level of performance will reach a maximum.  Past that point, the 
performance will actually drop off as the number of processors is increased 
(Almasi and Gottlieb 1994).  It is important to note that these costs are 
primarily a function of three things (the hardware, the number of messages 
[along with their distribution], and the size of the messages [see Figure 3]). 
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Figure 3.  The effect of communications costs on performance. 
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(3) The load balance:  For example, if each part of an airplane’s outer surface is 
assigned to a different processor, then one processor would get most, if not 
all, of the fuselage.  Each wing would be assigned to another processor, 
and, finally, the tail assembly would be assigned to a small number of 
processors.  Assuming that all of the components are grided at the same 
resolution, then the processor with the fuselage might be performing 
upwards of 50% of the work.  This would limit the potential for parallel 
speedup to no more than a factor of 2.  Clearly, a better approach is needed.  
Three commonly used approaches are: 

(a) Domain decomposition, which breaks up the larger zones into more 
manageable pieces. 

(b) Processing the zones one at a time and parallelizing the processing of 
the individual zones using loop-level parallelism or other techniques. 

(c) Domain agglomeration, which would assign multiple zones to a single 
processor.  This would be of little value in this case, but might be of 
value when all of the zones are small, but the range of zone sizes 
cannot be ignored.  Recently, James Taft (a contractor for the NASA 
Ames Research Laboratory) has been giving talks on some work that 
he has been doing in this area. 

5.  Soft Scalability 

Soft scalability is also known as scaled speedup and was first proposed by J. L. 
Gustafson (1988).  It proposes that so long as the run time of a job remains 
roughly constant when the job size and the number of processors increase at 
proportionally the same rate, then the job should be considered to be scalable.  
The advantage of this argument is that it allows one to get around the limitations 
imposed by Amdahl’s Law.  In fact, for many programs, it can eliminate both 
that limitation and problems with a poor ratio between communication and 
computation. 

An excellent example of this approach at work was provided by Steve Schraml of 
the U.S. Army Research Laboratory (ARL), Aberdeen Proving Ground, MD.  
When running CTH on the SGI R12K Origin 2000 and the SUN HPC 10000s 
located at the ARL-Major Shared Resource Center (MSRC), he measured the 
results in Table 2 and Figure 4. 

Two important objections to this approach are as follows: 

(1) It doesn’t address the problem of what to do if the speed at which problem 
A runs is unacceptable.  Presumably, if one runs a problem N times larger 
using N times as many processors, the speed will still be unacceptable.  The 
obvious answer is to use more processors for the current problem size.
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Table 2.  The scalability of the SGI R12000 Origin and the SUN HPC 10000 when running 
CTH. 

Grind Time in microseconds/zone/cycle System No. of Processors Measured 
1 Processor Dataa 8 Processor Dataa 

SGI Origin 1 36.979 36.979 N/A 
 2 20.479 18.490 N/A 
 4 10.355 9.2448 N/A 
 8 7.2749 4.6224 7.2749 
 16 4.0035 2.3112 3.6375 
 32 2.0599 1.1556 1.8187 
 48 1.4815 0.77040 1.2125 
 64 1.2456 0.57780 0.90936 
 96 0.73997 0.38520 0.60624 

SUN HPC 10000 1 47.558 47.558 N/A 
 2 25.622 23.779 N/A 
 4 11.875 11.890 N/A 
 8 7.0330 5.9448 7.0330 
 16 3.7468 2.9724 3.5165 
 32 1.8792 1.4862 1.7583 
 48 1.2385 0.99079 1.1722 
 60 1.1170 0.79263 0.93773 
 63 1.1075 0.75489 0.89308 
 64 1.1332 0.74309 0.87913 

a Predictions based on scaling. 
 
 

 However, that raises the question of hard scalability.  Potentially, this could 
result in some problems being run on so many processors that while their 
overall performance is good, their poor per processor performance might 
be deemed to be unacceptable.  This can be an especially bad problem if it 
causes one to run out of processors. 

(2) This metric cannot be applied to any problem where the parallelism is not 
directly proportional to the problem size.  In particular, when parallelizing 
the implicit computational fluid dynamics code F3D while using loop-level 
parallelism, it was discovered that for two important loops, there were 
dependencies in two out of three directions.  Therefore, if each of the 
dimensions of each zone is doubled, the amount of work increases by a 
factor of 8, while the parallelism increases by only a factor of 2. 

These can be important objections, since using the wrong metric or an 
inappropriate metric for the case at hand can lead to the wrong conclusions.  In 
some cases, this might result in one choosing a suboptimal solution, while, in 
other cases, it might result in a project being abandoned entirely. 
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Figure 4.  The scalability of the SGI R12000 Origin and the SUN HPC 10000 when 
running CTH. 

6.  Throughput 

While this metric is important to all users, it can be especially important to those 
users running parametric studies.  These studies can be grouped into three 
categories: 

(1) There are a large number of jobs to run, with no one job requiring a large 
number of resources.  Furthermore, there are no dependencies between the 
runs, so one can, in theory, run all of them at the same time. 

(2) There are a significant number of jobs to run, but they require a 
moderate-to-large amount of at least one resource (e.g., memory).  
However, there are few, if any, dependencies between the runs, so one may 
be able to run a limited number of these jobs at one time. 

(3) There are a significant number of jobs to run, with no one job requiring a 
large number of resources.  Unfortunately, there are dependencies between 
the runs, so one is again limited as to how many jobs can be run at one 
time. 
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The importance of these categories is that for a throughput optimized site, the 
first case might be able to achieve an acceptable level of performance while using 
a limited number of processors per job.  In the other two cases, one will almost 
always want to use a larger number of processors per job.  Therefore, in those 
cases, the scalability of the job takes on added importance. 

An important aspect in terms of throughput is the cost of the hardware in 
question.  While there can be significant variability in the cost of the hardware 
from one vendor to the next, and from one generation of system to the next 
within a single vendor’s product line, this discussion will ignore those issues.  
Instead, it will concentrate on the cost of the hardware times the time it is in use 
for the following three hypothetical system configurations: 

(1) Distributed memory MPP with a medium amount of memory (L MBytes), 
where the cost of the system is 2 * M, where M = the cost of the 
memory = the cost of everything else. 

(2) Distributed memory MPP with a large amount of memory (2 * L MBytes), 
where the cost of the system is 3 * M, where 2 * M = the cost of the memory, 
and M = the cost of everything else. 

(3) Shared memory MPP with a medium amount of memory per processors 
(L MBytes), where the cost of the system is 2 * M, where M = the cost of the 
memory = the cost of everything else. 

We will also consider the case of six sets of runs.  All of these runs will be 
assumed to have been parallelized using MPI and are assumed to exhibit linear 
speedup for small numbers of processors.  Three of the runs are representative of 
many CFD applications in that when their work is spread across N processors, 
the per processor amount of memory required is also decreased by a factor of N.  
The other three sets of runs are representative of many chemistry applications in 
that virtually all of the data must be replicated for each processor.  Therefore, for 
this second group of runs, using additional processors will not allow one to run a 
job that is too big to run on a single processor.  The memory requirements for the 
three jobs from each of the two sets of jobs will be assumed to be L/4, L, and 4L. 

Inspection will show that the largest job relying on replication can only be run on 
the shared memory MPP.  Even in this case, it will be “stealing” memory from 
other jobs’ processors.  Depending on the workload, this might be acceptable or 
might require some of the processors to be left unused.  Providing that this does 
not happen often and/or that these jobs represent a small percentage of the total 
workload, this should be an acceptable solution to the problem of running this 
type of job.  However, if these jobs are more common, then it may be desirable to 
configure a system specifically to meet the needs of such a job. 

Inspection also shows that for the application which does not require the 
replication of data structures, that for certain problem sizes, one may need to use 
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more than just one processor on a distributed memory system before the job can 
be run (e.g., the job requiring 4L MBytes of memory requires a minimum of 
four processors to run on the first of our hypothetical systems).  However, most 
combinations of system type and job size for this class of jobs can be made to 
work.  If one considers the cost of running these jobs, one might assume that the 
cost would be as follows: 

cost for N processors + cost for memory used (e.g., L MBytes). 

However, for the distributed memory systems, where the memory is tightly tied 
to the processors, the actual cost would be as follows: 

cost for N processors + cost for the memory associated with 

N processors (e.g., N * L MBytes). 

From this, one can conclude that regardless of which class of job is run or which 
size dataset is being run, so long as the job is runable, the cost of running the job 
on System 1 will always be 2 * M * T1, where T1 is the time to run the job on a 
single processor (assuming the processor is configured with enough memory to 
run the job).  For System 2, the cost will be 3 * M * T1.  Similarly, for System 3, the 
cost will be 2 * M * T1. 

The preceding analysis assumed that a job should only be charged for the 
resources it is tying up.  However, one can also argue that a job should be 
charged for the resources that it is causing to be tied up.  In other words, in order 
to maintain the ability to run a large memory job on a distributed memory 
system, the large memory job is causing the system to be configured with extra 
memory.  This has the effect of decreasing the total number of processors that 
can be purchased and therefore adversely effecting the throughput of jobs that 
do not require a system with such a generous configuration.  There are three 
main solutions to this problem; which one should be used can be highly site 
specific as follows: 

(1) Arbitrarily limit the amount of memory per processor on a distributed 
memory MPP, thereby forcing the jobs to live within that limit.  In the past, 
many customers of MPPs had few, if any, choices as to the amount of 
memory per processor, thereby forcing them into this mode of operation. 

(2) Purchase either multiple systems and/or systems composed of nodes with 
multiple configurations.  In this case, one can attempt to more closely 
match the requirements of the jobs to the available hardware.  In general, 
this solution can be very cost effective and therefore should result in a 
superior level of throughput. 

(3) Purchase at least some shared memory systems to run the jobs requiring 
the greatest amount of memory per processor.  The inherent flexibility of 
these systems may justify the additional expenses associated with this class 
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of hardware (something that has been ignored in this discussion up until 
now).  This does not mean that this class of system should be the only class 
purchased.  Nor does it mean that it should represent the majority of the 
dollars spent.  However, it can be an extremely efficient method for 
supporting a modest number of memory-hungry jobs (frequently referred 
to as memory hogs).  Depending on the job mix and the mix of system 
configurations that were purchased, one can sometimes argue that these 
systems will pay for themselves by decreasing the amount of memory that 
the MPP(s) need to be equipped with. 

7.  Serial Efficiency 

Most of this report has dealt with the scalability.  Now let us return to the 
question of serial efficiency.  Even if one is running similar programs based on 
the same algorithm using similar parallelization strategies, differences in serial 
efficiency can significantly affect the performance of the programs.  In particular, 
we will consider the performance of three versions of the F3D program that was 
previously mentioned.  Marek Behr, formerly of the U.S. Army High 
Performance Computing Research Center, produced two versions of the code 
designed to run on distributed memory platforms.  One version used SHMEM 
calls and could be run on either the SGI Origin 2000 or the Cray T3E.  The other 
version of this code used the more portable, but arguably less efficient MPI calls.  
The third version of the code was written by the author and was based on 
compiler directives for loop-level parallelism.  As such, it could only be run on a 
shared memory platform and is highly dependent on the design characteristics of 
the platform being used.  Table 3 and Figure 5 contain results from running these 
codes on several different platforms for a 1-million grid point test case. 

From the results in Table 3 and Figure 5, one can see that there are a number of 
factors which can affect the performance of a program.  The peak speed of the 
processor and the number of processors used are only two of those factors. 
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Table 3.  The performance of various versions of the F3D code when run on modern 
scalable systems.a 

Speed 
 

System 
Peak Processor 

Speed 
(MFLOPS) 

No. of 
Processors Used 

 
Version 

(time steps/hr) MFLOPS 
SGI R10K O2K 390 8 Compiler Directives 793 1.04E3 
SGI R12K O2K 600 8 SHMEM 382 4.99E2 
SGI R10K O2K 390 32 Compiler Directives 2138 2.79E3 
SGI R12K O2K 600 

600 
32 SHMEM 

Compiler Directives 
989 

2877 
1.29E3 
3.76E3 

SGI R10K O2K 390 48 Compiler Directives 2725 3.56E3 
SGI R12K O2K 600 

600 
48 SHMEM 

Compiler Directives 
1083 
3545 

1.42E3 
4.63E3 

SGI R10K O2K 390 64 Compiler Directives 2601 3.40E3 
SGI R12K O2K 600 

600 
64 SHMEM 

Compiler Directives 
1050 
3694 

1.37E3 
4.83E3 

SGI R10K O2K 390 88 Compiler Directives 3619 4.73E3 
SGI R12K O2K 600 

600 
88 SHMEM 

Compiler Directives 
1320 
5087 

1.73E3 
6.65E3 

Cray T3E-1200 1200 8 SHMEM 349 4.56E2 
  32  1062 1.39E3 
  48  1431 1.87E3 
  64  1705 2.23E3 
  88  2443 3.19E3 
  128  2948 3.85E3 
IBM SP 160 (MHz) 640 8 MPI 199 2.60E2 
  32  342 4.47E2 
  48  420 5.49E2 
  64  423 5.52E2 
  88  396 5.18E2 
Sun HPC 10000 800 8 Compiler Directives 999 1.31E3 
  32  2619 3.64E3 
  48  3093 4.04E3 
  56  3391 4.43E3 
  64  2819 3.68E3 
HP V-Class 1760 8 Compiler Directives 1632 2.13E3 
  14  2392 3.13E3 

a For additional details, see Behr et al. (2000). 
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Figure 5(a).  The comparative performance of the parallelized RISC optimized version for 
shared memory platforms of the F3D code.* 
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Figure 5(b).  The comparative performance of the parallelized RISC optimized version for 
distributed memory platforms of the F3D code.* 

                                                      
* The speeds have been adjusted to remove startup and termination costs. 
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8.  Conclusions 

This report has discussed a number of issues relating to the topics of scalability 
and performance.  It has been shown that for some problems, the ideal speedup 
will resemble a stair step rather than a straight line.  With this concept in hand, 
two ways for measuring scalability were discussed, with emphasis placed on 
their strengths and weaknesses.  This discussion included examples using these 
metrics.  Hopefully, this report will help the reader in his/her work.  In 
particular, it points out that while scalability is good, most users are concerned 
with performance and throughput. 
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Glossary 

AHPCRC Army High Performance Computing Research Center 

CFD Computational fluid dynamics 

MFLOPS Million floating point operations per second 

MIMD Multiple instruction multiple data 

MPI Message-passing interface 

MPP Massively parallel processor 

RISC Reduced instruction set computer 

SIMD Single instruction multiple data 
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